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Abstract: A first order phase transition usually proceeds by nucleating bubbles of the

new phase which then rapidly expand. In confining gauge theories with a gravity dual, the

deconfined phase is often described by a black hole. If one starts in this phase and lowers

the temperature, the usual description of how the phase transition proceeds violates the

area theorem. We study the dynamics of this phase transition using the insights from the

dual gravitational description, and resolve this apparent contradiction.
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1. Introduction

Confining - deconfining transitions in certain gauge theories have been given geometric

descriptions using the gauge-gravity correspondence [1]. A common feature of these de-

scriptions is that the deconfined phase is described by a black hole, and the confined phase

is described by a nonsingular spacetime without a horizon. In this paper, we study the

dynamics of this transition in the case when it is first order. One might expect that if

one starts at high temperature in the deconfined phase, and then lowers the temperature

below its critical value, one would nucleate bubbles of confined phase which grow until

they collide. On the gravity side this would correspond to starting with a black brane,

nucleating “gaps” in the horizon, which then grow until they take over the entire horizon.

This scenario has been implicitly assumed in some papers in the literature [2, 3].

This scenario, however, has an serious problem: it violates a well established result

in gravitational physics, namely the area theorem. The original nucleation of the bubbles

of confined phase decreases the horizon area, but one could argue that this is a quantum

process, so the area theorem does not apply. The more serious problem is with the growth

of the bubbles, which is usually assumed to be rapid and modeled on Coleman’s discussion

of false vacuum decay [4], or its generalization to nonzero temperature [5] . However, at

large N , the growth of the bubbles should be described by a classical supergravity solution

which obeys the area theorem.

We will show that if one starts with a supercooled deconfined phase (with temperature

well below the critical temperature), the bubbles of confined phase can grow rapidly for a

while, during which time the horizon increases its extent in the fifth direction to compensate

for the decrease in area in the field theory directions. However, when the temperature of

the black hole reaches the critical temperature, the growth slows dramatically. The result is

a localized black hole which is dual to a plasma-ball [6]. Plasma balls are localized regions

of deconfined plasma at (or near) the critical temperature surrounded by the confining
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vacuum. In the large N limit, they are stable. When 1/N2 corrections are included, plasma-

balls decay slowly by thermally radiating hadrons at the deconfinement temperature. This

is dual to Hawking radiation of the localized black hole in the bulk.1

By now there are several examples of confining gauge theories that have a purely

gravitational dual description [1, 7, 8]. We will focus on perhaps the simplest example which

consists of N = 4 super Yang-Mills compactified on a circle with antiperiodic fermions.

This breaks the supersymmetry, and gives mass to the fermions and scalars. The low energy

limit is a confining, purely bosonic 2+1 dimensional gauge theory. We will show that in this

case, the bubbles of confined phase must stop expanding rapidly when the black hole still

occupies at least one quarter of the initial volume! At that point, the evolution depends on

the boundary conditions. If the system is strictly held at a constant temperature (below

the critical temperature), the black hole will slowly evaporate, so the phase transition is

eventually completed over a long time scale. However, since AdS acts like a confining box,

it seems more natural to work in a microcanonical ensemble and not to include an external

heat bath. In this case, we will see that the black hole cannot evaporate completely unless

N2 is sufficiently small. Since the semi-classical gravitational description is only valid for

much larger values of N2, the gauge theory will always contain a region of deconfined phase.

There is a related question which we do not address here arising in recent attempts to

understand RHIC physics using gauge-gravity duality. The RHIC fireball is often modeled

by a black hole (see e.g. [9] and references therein) , but as it expands and cools it rapidly

enters the confining phase. How can the horizon disappear so quickly? Lattice calculations

indicate that ordinary QCD does not have a first order deconfinement transition, so this is

not a problem of bubble nucleation. Nevertheless, it is hard to imagine a consistent gravity

description in which a macroscopic event horizon is present one moment and gone soon

after.

2. Classical gravity analysis

As mentioned above, we will focus on the case of N = 4 super Yang-Mills on R3 × S1
θ .

The circle has antiperiodic fermions, but is spacelike. It does not represent a euclidean

time direction. If the length of this circle is L, the (confining) ground state of this theory

is described by the AdS soliton [1, 12]

ds2 =
r2

`2
(−dt2 + dx2 + dy2 + fdθ2) +

`2

r2
f−1dr2 + `2dΩ5 (2.1)

where

f = 1 − r4
0

r4
(2.2)

The space only exists for r > r0 and regularity at r = r0 requires r0 = π`2/L. At

sufficiently high temperatures T > Tc, the system is in a deconfined phase described by

1Previous discussions of the confining-deconfining transition as a “slow” process focussed on the rate of

bubble nucleation [10, 11]. We are discussing a qualitatively different effect which occurs after the bubbles

are present.
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the black 3-brane metric

ds2 =
r2

`2
(−fdt2 + dx2 + dy2 + dθ2) +

`2

r2
f−1dr2 + `2dΩ5 (2.3)

where f is again given by (2.2) but now r0 = π`2T .

The confinement-deconfinement transition temperature can be obtained by comparing

the free energy of a gas at temperature T in the soliton background with the black brane.

To regularize the infinite volume of the spacelike directions, we will compactify x and y

onto a (comparatively large) torus, i.e. Vol(T 2) = V2,
√

V2 À `, L. To leading order in a

saddlepoint approximation, the free energy is proportional to the action of the euclidean

solutions. It is clear that the euclidean versions of these geometries are the same, and

there is simply a choice of labeling, i.e., which of the two boundary circles is the euclidean

time circle τ with length β = 1/T and which is our original spacelike circle θ. As such, we

expect a phase transition between the black brane and thermal gas at β = L. In fact, we

can calculate the free energy difference between the phases using F ∝ SEuclidean and find:

Fbrane − Fsoliton ∝ 1 − (LT )4 (2.4)

So for T < 1/L, the thermal gas dominates, and at T > 1/L, the black brane dominates. In

this gravitational language, this is usually called the Hawking-Page phase transition [13].

Suppose we start in the deconfined phase of the gauge theory and quickly lower the

temperature below Tc = 1/L. How does the phase transition proceed?2 We expect bubbles

of confined phase to be nucleated and grow. On the gravity side this corresponds to bubbles

of soliton being nucleated on the black 3-brane. At large N , the growth of these bubbles

are described by supergravity. We will first consider the growth of these bubbles at fixed

energy (i.e. in a microcanonical ensemble) which is the natural boundary condition for

asymptotically AdS solutions. At the end, we will comment on the difference between this

and evolution in a canonical ensemble.

The energy and entropy of the black brane are [14]

Ebrane =
3

8
π2N2LT 4V2 (2.5)

Sbrane =
Ahorizon

4
=

1

2
π2N2LT 3V2 (2.6)

and the energy of the AdS soliton is [12]

Esoliton = −1

8

π2N2

L3
V2 (2.7)

which of course has no horizon and thus no instrinsic entropy. These energies are measured

relative to pure AdS. Note that there is a mass gap between the soliton and even a low

temperature black brane.

After the bubbles are nucleated, only a fraction α of the initial volume V2 in the (x, y)

directions will be occupied by the black brane and the rest will be the soliton. While it is

2Of course a phase transition can not truly occur (at finite N) unless we take the volume to infinity, but

this is just V2 → ∞.
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difficult to follow the subsequent evolution in detail, we know that in the classical (large

N) limit, the horizon area must increase. So we will fix the energy

E = αEbrane + (1 − α)Esoliton (2.8)

and maximize the entropy with respect to α.

We ignore effects coming from the boundary between these two regions. This transition

region is expected to have a scale no larger than L (set by the critical temperature), so it

is negligible whenever both regions are much larger than L. When the bubbles are first

nucleated their size is indeed of order L, but the boundary effects quickly become negligible

when the bubbles expand. Since V2 À L2, a bubble initially takes up only a small fraction

of the volume of the brane.

The entropy of our configuration is just α times the entropy of the homogeneous black

brane:

S =
1

2
π2N2LT 3αV2 (2.9)

where T is fixed by the fact that the total energy E is fixed. It is easier to characterize E

by the equivalent temperature, T0, that a black brane covering all of V2 would have with

this total energy. Note that T0 is only well-defined if E > 0 so we would have enough

energy to form a homogeneous black brane. Since we are starting with a black brane with

small regions of soliton this is indeed the case. Our energy constraint (2.8) is then

3

8
π2N2LT 4

0 V2 =
3

8
π2N2LT 4αV2 −

1

8

π2N2

L3
(1 − α)V2 (2.10)

This yields

T =
1

L

[

1 − α

3α
+

1

α
(T0L)4

]1/4

(2.11)

and hence

S =
π2N2V2

2L2
α

[

1 − α

3α
+

1

α
(T0L)4

]3/4

(2.12)

Since α ∈ [0, 1], we see two distinct phases: for T0 ≥ 1/L, the entropy is maximized by

the brane covering the entire V2. However since we are starting with a black brane below

the critical temperature with part of its volume replaced by the soliton, the physically

interesting regime is T0 < 1/L. In this case, S is maximized at

α =
1

4
[1 + 3(T0L)4] (2.13)

Most notably we have even as T0 → 0, α = 1/4, so the maximal entropy configuration is

a localized black hole taking up a quarter of the initial volume. Therefore even if we start

at an energy well below the critical energy, the black brane will not disappear completely,

but instead will localize. In terms of the gauge theory, there will still be a large region of

deconfined plasma.

Substituting (2.13) into (2.11) we see that in the maximal entropy configuration, the

temperature of the black hole is

T =
1

L
. (2.14)
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AdS Soliton

black brane

below critical energy density

rapidly expanding bubbles of

AdS soliton

localized black hole

which may slowly evaporate

Figure 1: The phase transition between a black brane everywhere and a localized black hole.

The maximum entropy configuration always has the black hole at the critical temperature,

independent of T0! This agrees with the discussion of plasma-balls in [6] where it is shown

that the thermodynamic pressure (driving the plasma ball to expand or contract) vanishes

at the critical temperature.

3. 1/N2 effects of a thermal gas

Since our discussion so far has used just classical gravity, it does not include the entropy in

the Hawking radiation around the black hole, or the entropy of the gas in the AdS soliton.

We now consider these 1/N2 effects.

A full calculation of the energy and entropy of a thermal gas of the “massless” degrees

of freedom is daunting and not terribly enlightening. We know that a massless scalar field

in the soliton background has modes in the AdS radial direction which simply gives us a

tower of particles with masses of order 1/L [15]. A proper calculation in the black brane

phase would require computing the expectation value of the quantum stress energy tensor

in the Hartle-Hawking state.
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However, the qualitative effects of including Hawking radiation are simple to un-

derstand. The large localized black holes have negative specific heat, just like small

Schwarzschild-like black holes [6]. When we include 1/N2 effects, the localized black hole

will radiate a small amount of energy and come into thermal equilibrium with its Hawking

radiation. It does not completely evaporate. Its mass will be slightly reduced, and its

temperature will be slightly increased.

We have focussed on evolution at fixed energy corresponding to a microcanonical de-

scription. What would change if we considered a canonical ensemble at fixed temperature?

Of course, in this case, the entropy of our system can decrease (provided the free energy

also decreases, so the entropy in the heat bath grows to compensate it). The initial evo-

lution of the bubbles will be similar. However the localized black hole occupying at least

one quarter the volume will no longer be stable. If there is an external heat bath below

the transition temperature, the black hole will slowly evaporate. The phase transition will

eventually be completed, but over a much longer time scale.

4. Discussion

We have discussed the dynamics of first order confining-deconfining transitions in gauge

theories with gravity duals. Starting with a supercooled deconfined phase, there are three

stages in the transition (see figure 1): (1) nucleation of bubbles of confined phase, (2)

rapid growth of these bubbles, (3) large plasma-ball phase. In a microcanonical (fixed

energy) description, the plasma-ball is stable and the phase transition is not completed. In

a canonical (fixed temperature) description, the plasma-ball slowly hadronizes. In either

case, when the system enters stage three, the plasma ball occupies at least 25% of the

initial volume,3 so it is not a small effect.

Starting in the confined phase and raising the temperature, the phase transition pro-

ceeds differently. Now there is no analog of the third stage. Once the temperature is above

the critical temperature, the black hole horizon can grow rapidly until it covers the entire

volume.

If the rate of bubble nucleation is very slow, and one starts with a black brane well

below the critical temperature, it might Hawking evaporate to the point where the size

of the circle at the horizon reaches the string scale. It was argued in [16] that a winding

string tachyon instability would then set in and cause the black brane to turn into the AdS

soliton. We now check that the total entropy is increased in this transition. If we assume

that the energy all goes into a gas of particles, then it is easy to see that the entropy would

not increase when N is large. For a black brane with T ¿ 1/L, the energy released in the

transition to the soliton is essentially independent of T and given by the mass of the soliton

relative to AdS: E ∼ N2V2/L
3. Let us focus on the N dependence. A relativistic gas in

9 + 1 dimensions has Sgas ∼ E9/10, so Sgas ∼ N9/5. Since the entropy of the black brane

is proportional to N2, Sgas < Sbrane for large N , even when the tachyon instability sets in.

Another problem with the energy going into a gas is that the effective temperature of that

3This is for the specific case we considered. We expect other systems will be similar.
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gas would be much greater than the critical temperature. Since the number of species in

the bulk is independent of N , E ∼ T 10 implies T ∼ N1/5. With such a high temperature,

the gas should collapse back to a black brane.

The resolution is that the energy released in the transition to the soliton goes mainly

into one (or more) highly excited fundamental strings. A highly excited string has entropy

Sstring ∼ Estring ls. If the string is localized near the tip of the soliton,4 its energy is

redshifted by a factor r0/` = π`/L. So the proper energy of the string is larger than the

change in the total energy measured at infinity:

Estring =
πN2V2

8L2`
(4.1)

The entropy in the string is then

Sstring ∼ N2V2

L2

ls
`

(4.2)

We want to compare this with the entropy of the black brane at the point where the tachyon

instability sets in. The radius of the circle at the horizon is Lr0/` = π`(LT ). When this is

equal to the string scale,

Sbrane ∼
N2V2

L2

(

ls
`

)3

(4.3)

Since ` À ls, the entropy in the fundamental string is always greater than the black brane

when the winding tachyon condenses. However both of these entropies are much smaller

than the localized black hole we discussed earlier. If the bubble nucleation rate is not

negligible, the endstate will be the localized black hole with entropy

Slocal bh ∼ N2V2

L2
(4.4)
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